New primal-dual algorithms for Steiner tree problems

نویسنده

  • Vardges Melkonian
چکیده

We present new primal-dual algorithms for several network design problems. The problems considered are the generalized Steiner tree problem (GST), the directed Steiner tree problem (DST), and the set cover problem (SC) which is a subcase of DST. All our problems are NP-hard; so we are interested in approximation algorithms for them. First we give an algorithm for DST which is based on the traditional approach of designing primal-dual approximation algorithms. We show that the approximation factor of the algorithm is k, where k is the the number of terminals, in the case when the problem is restricted to quasibipartite graphs. We also give pathologically bad examples for the algorithm performance. To overcome the problems exposed by the bad examples, we design a new framework for primal-dual algorithms which can be applied to all of our problems. The main feature of the new approach is that, unlike the traditional primal-dual algorithms, it keeps the dual solution in the interior of the dual feasible region. The new approach allows us to avoid including too many arcs in the solution, and thus achieves a smaller-cost solution. Our computational results show that the interior-point version of the primal-dual most of the time performs better than the original primal-dual method. (

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

Approximate k-MSTs and k-Steiner Trees via the Primal-Dual Method and Lagrangean Relaxation

Garg [10] gives two approximation algorithms for the minimum-cost tree spanning k vertices in an undirected graph. Recently Jain and Vazirani [15] discovered primal-dual approximation algorithms for the metric uncapacitated facility location and k-median problems. In this paper we show how Garg’s algorithms can be explained simply with ideas introduced by Jain and Vazirani, in particular via a ...

متن کامل

Primal-dual approximation algorithms for the Prize-Collecting Steiner Tree Problem

The primal-dual scheme has been used to provide approximation algorithms for many problems. Goemans and Williamson gave a (2−1/(n−1))-approximation for the Prize-Collecting Steiner Tree Problem that runs in O(n3 logn) time—it applies the primaldual scheme once for each of the n vertices of the graph. We present a primal-dual algorithm that runs in O(n2 logn), as it applies this scheme only once...

متن کامل

How well can Primal - Dual and Local - Ratio algorithms perform ? ∗ Allan

We define an algorithmic paradigm, the stack model, that captures many primal dual and local ratio algorithms for approximating covering and packing problems. The stack model is defined syntactically and without any complexity limitations and hence our approximation bounds are independent of the P vs NP question. Using the stack model, we bound the performance of a broad class of primal dual an...

متن کامل

How well can Primal-Dual and Local-Ratio algorithms

We define an algorithmic paradigm, the stack model, that captures many primal-dual and local-ratio algorithms for approximating covering and packing problems. The stack model is defined syntactically and without any complexity limitations and hence our approximation bounds are independent of the P vs NP question. We provide tools to bound the performance of primal dual and local ratio algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & OR

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2007